
to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

Chip simulation of automotive ECUs
Jakob Mauss, Matthias Simons

Abstract

Modern ECUs contain ten thousands of engine parameters that need to be tuned.
Calibration of all these parameters is time consuming and complex. Simulation on a
PC could help to automate and speed up the calibration process, in particular if
simulation runs much faster (e. g. 20 times) than real-time. However, engine
calibration is typically performed by an OEM, while the ECU code is owned by the
supplier of the ECU. Therefore, the OEM is typically unable to set up a ECU
simulation based on the original C code of the ECU. Instead, to set up a simulation,
time consuming and error prone reverse engineering is needed to develop an
'equivalent model' of the ECU function of interest. To improve this situation, we have
integrated a chip simulator into the virtual ECU tool Silver. This is used to simulate
hex files compiled for TriCore targets directly on PC. Simulation requires
1. a hex file that contains program code and parameters of the simulated functions
2. start addresses of the functions to be simulated
3. an ASAP2/a2l file that defines the conversion rules for the involved inputs,

outputs, and characteristics, as well as corresponding addresses
The start addresses of functions can e. g. be extracted from a map file generated
together with the hex file. Silver uses the a2l file to automatically convert scaled
integer values to physical values and vice versa during simulation. A TriCore
simulation can also be exported as SFunction (mexw32 file) for use in
MATLAB/Simulink. On a standard PC, hex simulation runs with about 40 MIPS. If
only simulating selected functions of an ECU, this is fast enough to run a simulation
much faster than real-time. In this paper, we also report how such simulations are
used today to support the development of gasoline engines at Daimler.

�� Introduction: Virtual ECUs in the development process

Simulation has great potential to improve the development process for ECUs.

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

• on a PC, a calibration tool like INCA (ETAS) or CANape (Vector) can be
connected to a virtual ECU via XCP to measure into a running simulation and
to tune characteristics online. This way, many parameters of a ECU can be
tuned using a relatively cheap and highly available PC platform, without

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

models can be imported from many simulation tools into Silver, including
MATLAB/Simulink, Dymola, SimulationX and MapleSim, e.g. through the FMI format
for model exchange [4].

However, sometimes C code is not available for implementing a virtual ECU. There
are two main sources for such a situation:

• Protection of intellectual property: All or major parts of the ECU have been
developed by a supplier and the OEM interested in building a virtual ECU (e.g.
to support calibration, a task typically performed by an OEM) has therefore no
access to the C code.

•

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

The tasks of categories 1 and 3 typically depend on details of the particular chip, and
on the ECU hardware. In contrast, tasks of category 2 are fairly independent from
such hardware-specific details. To simulate ECU code, it is therefore convenient to
run only tasks of category 2. The required inputs for these tasks can either be taken
from measurement files (open-loop simulation), or they are computed online by some
plant model (closed-loop simulation), bypassing the tasks of category 1. Likewise,
the outputs of category 2 tasks can be directly compared to measurements (open
loop) or fed into the plant model (closed loop), bypassing the category 3 tasks. The
signal interface between categories 1-2 and 2-3 is typically well documented and
available, e.g. from the CAN specification (DBC file) of the ECU.

This modelling strategy has a very good cost-benefit ratio. In order to simulate also
the tasks of categories 1 and 3, one has to model hundreds or peripheral and chip
specific registers, and to build state-machine models for low-level peripherals, such
as CAN controllers. Technically, this is possible, e. g. with SystemC [5], but hardly
justified by the added value, at least for the applications considered here.

Silver 2.5 uses a specification file (similar to the OIL file used to configure OSEK) to
specify, which tasks of a hex file to simulate. Silver automatically turns such a spec
file into an executable Silver module (dll) or SFunction. A typical spec file looks as
follows:

01 # specification of sfunction or Silver module
02 hex_file(m12345.hex, TriCore_1.3.1)
03 a2l_file(m12345.a2l)
04 map_file(m12345.map) # a TASKING or GNU map file
05 frame_file(frame.s) # assembler code to emulate RTOS
06 frame_set(STEP_SIZE, 10) # Silver step size in ms
07 frame_set(TEXT_START, 0xa0000000) # location of frame code
08
09 # functions to be simulated, in order of execution
10 task_initial(ABCDE_ini)
11 task_initial(ABCDE_inisyn)
12 task_triggered(ABCDE_syn, trigger_ABCDE_syn)
13 task_periodic(ABCDE_20ms, 20, 0)
14 task_periodic(ABCDE_200ms, 200, 0)
15
16 # interface of the generated sfunction or Silver module
17 a2l_function_inputs(ABCDE)
18 a2l_function_outputs(ABCDE)
19 a2l_function_parameters_defined(ABCDE)

The hash # character starts a comment, which is ignored by Silver. The spec file first
lists the required files (line 2-5). The map file is optional. If a map file is given, the

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

emulation. For event triggered tasks, Silver offers two alternative event models. Line
12 shows a function that is executed n times at each Silver step, where n is the value
of the input variable trigger_ABCDE_syn at the beginning of the step. Typically, n
is 0 or 1 during simulation. Higher values occur only, when more than one trigger
event occurs during one step. Silver also offers a more accurate event model, that
allows execution of an event triggered task at exact event time, not just at the
beginning of a step.

Finally, lines 17-19 define the inputs, outputs and parameters of the generated
module or SFunction. In this case, we just reuse the interface of a FUNCTION
element of the a2l file, for a function called ABCDE. It is also possible, to list
individual variables here by name, as long as their properties (such as address,
conversion rule, data type) are described in the a2l file.

In addition, the spec file offers means to specify
• properties of the XCP emulation, if any, to support online calibration and

measurement using tools such as INCA and CANape
• data sections to be included into the generated Silver module or SFunction.

This way, initial loading of the hex file into simulated memory can be avoided,
to speed up simulation.

• memory areas to be copied to other (faster) memory by the start-up code
• functions to be replaced by other functions. This way, a function called by a

task of category 1 or 3 to access sensors or actuators can be replaced by a
function that directly accesses a plant model or measured values instead.

• logging options, e.g. to track memory access during simulation

The Silver module or SFunction generated this way performs exactly the same
computations on PC, as on the real target, since the effect of every machine
instruction on memory and chip registers is exactly simulated on PC. However:

• simulation is just instruction accurate, not cycle accurate. This means, the
simulation on PC cannot be used to exactly predict execution time on the real
target. For example, pipeline effects of different access times to memory (e.g.
fast on-chip RAM vs. external RAM) are not modelled.

• conceptually, simulated tasks execute infinitely fast. This means that the
emulated RTOS never interrupts a task. The corresponding effects cannot be
analysed using the generated model.

• Silicon bugs are not simulated. If a compiler for the real target does not work

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

���� ������	�
����	�����	������� �! "#$	���	�%

Silver can also turn a spec file as described in section 2.1 into a SFunction, i.e. a
mexw32 file that runs in Simulink. This is particularly interesting when using chip
simulation to support automated optimization of parameters, because many
optimization tools are implemented on top of MATLAB/Simulink. The generated
SFunction accepts all characteristics listed in the spec file as SFunction parameters.
This makes it easy to connect the generated SFunction with an optimization
procedure. For example, the SFunction can be called with workspace variables that
are then automatically varied by the optimization procedure between SFunction calls.
The performance of a generated SFunction is again about 40 MIPS.

�� Applications of chip simulation

In this section, we shortly sketch current applications of the presented approach at
Daimler.

���� "&��������%�����'	�(�)��*�

During development of an engine controller, a developer might want to replace a
certain function of the ECU by its own version of that function, bypassing the original
function. For real ECUs, this can be done with tools such as EHOOKS (ETAS) or No-
Hooks (ATI). These tools manipulate the original hex file, such that the bypassed
function is not executed any more, but just calls the new function instead. The new
function is e. g. developed with MATLAB/Simulink in conjunction with a code
generator and a compiler for the target processor. This methodology still requires
access to the real ECU: the manipulated hex file needs to be flashed into the ECU,
and the ECU needs to run the new function, such that its behaviour can be assessed.
In order to further simplify the assessment of the new function, we execute the

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

��� ������.

Dr. Jakob Mauss, QTronic GmbH, Alt-Moabit 92, 10559 Berlin
Matthias Simons, Daimler AG, 70546 Stuttgart

9

