
presented at the: 8th International CTI Symposium Innovative Automotive Transmissions, Berlin, 1 - 2.12.2009.

��������	�
���	�����
�����������
������������

Dr. Nikolaos Papakonstantinou, Dr. Sigrid Klinger
GIF - Gesellschaft für Industrieforschung mbH

{nikolaos.pap, sigrid.klinger}@gif.net

Dr. Mugur Tatar
QTronic GmbH

mugur.tatar@QTronic.de

��������

Transmission systems, such as DCTs, require systematic test and validation methods in order to
guarantee correctness and quality despite shorter development times and increasing complexity.
Therefore, during the development of a new dual clutch transmission at GIF, a process for extens-
ive test and optimization of the control software has been adopted. For this, system correctness
and quality criteria are evaluated for thousands of simulated test scenarios (driving maneuvers).
Problems and system weak points are identified and corrected as early as possible and the pro-
cess is repeated after each correction or system change. The tool TestWeaver [2] from QTronic
was used for the systematic generation and evaluation of the test scenarios. This allows achieving
high test coverage with minimal test specification effort. This extensive test process drives and ac-
celerates the optimisation of the control software. Beside MIL tests also intensive SIL, HIL and
tests with the real hardware components in the loop must be performed in order to guarantee the
functionality of the automatically generated code, the proper functionality of the TCU including
electronics and CAN communication, and the robustness of the software functions under real oper-
ating conditions [3].

� �
���������

Transmission systems are under continuous improvement with respect to efficiency, robustness,
costs and comfort. Many of these requirements have to be addressed also by the transmission
control software, which is becoming more and more intelligent. Many driving conditions have to be
detected fast and reliably. Specific, optimized actions and control strategies have to be performed

ging the acceleration pedal during the shift, with ideal sensor models or with active injection of

Figure 2: Model-based function development

The next phase in the development process is the function prototyping phase, where the de-
veloped algorithms are tested and validated with the real hardware components. For this purpose
rapid prototyping tools from dSPACE are used. From the Simulink modules for the functional and
safety software, C-code is automatically generated using Real Time Workshop / Mathworks and
Real Time Interface / dSPACE. The prototype code can then run in a prototype controller from
dSPACE. This tool chain is very flexible and minimises the time to prototype tests, since the engin-
eers can concentrate purely on the function development.

In the same development environment also the embedded code generation is integrated. Using the
same Simulink modules and with Target Link from dSPACE a 100% automated embedded code
for the target TCU is generated. Based on Target Link, Software-In-the-Loop tests (SIL) are pos-
sible. In the SIL tests the generated embedded code is tested in closed loop simulation using the
same powertrain model. The differences between the functional Simulink models and the gener-
ated code are analyzed in order to evaluate the efficiency of the generated code. The number of
performed test cases, selected from a generated data base, depends on the target test coverage.

The generated embedded code of the functional software is integrated with the software from the
TCU supplier. This code contains the operating system, the BIOS and the fault monitoring func-
tions of the electronic system. This consists of the microcontroller, the sensors and the actuators of

the hydraulic module. The complete embedded code is then flashed in the production TCU. The
software integration and the correct operation of the functional code on the target processor is
checked and validated in a HIL system. In the HIL test the driving situations can be simulated using
again the same powertrain model as in MIL and SIL. Furthermore, some critical situations, such as
those caused by electrical failures, are simulated and the behaviour of the TCU is validated. The
tested TCU is then released for vehicle use and for the final calibration procedure – for more de-
tails see [3].

4 ����������
 ���
����
����	�����
��

The software development process described above consists of different steps where the test and
validation of the current software must be done. In the following sections the test procedures will

The system states reached during a test are reported using HTML tables. Via further links, descrip-
tions are provided about how each state can be reached. Based on this information, at the end of
the test, the scenarios with problems can be replayed in simulation by the development engineers
for detailed analysis and debugging. More details about the tool can be found in [2].

Figure 3: The definition of a reporter for TestWeaver

Figure 4: Automatic scenario generation and assessment

4.2 �����
 �����������
����
����������

The simulation started by TestWeaver includes: the DCT control software, the powertrain model,
the driver’s input block, where the choosers of TestWeaver are inserted, and a scope block where
different state variables and the reporter blocks of TestWeaver are integrated. Additional functions
can be added, beside the functional software and the powertrain model, and can be used as qual-
ity observers and for a better scenario assessment during the tests.

The signals controlled by TestWeaver in this application include the ignition, the acceleration ped-
al, the brake

The Simulink model that contains the DCT control software, the powertrain model, the driver model
and the scopes are compiled with Real-Time Workshop for faster simulation. During scenario gen-
eration with TestWeaver the compiled model is used. This simulation runs about 20 times faster
than real time1 on a normal PC. This way in 16 hours running time more than 14.000 scenarios are
generated.

Subsequently,

Figure 7: Embedded code quality control and coverage

7 '�(������

The

 Figure 9: Signal flow during HIL testing

Since the communication of the different modules of the HIL environment is quite complicated, as
can be seen in the figure above, some intelligent communication techniques are used in order to
improve the HIL performance. For this reason the whole simulation is controlled by the Automation
Desk. Automation Desk performs tests in loops. Measured data from the TCU and the powertrain
model running on HIL are requested when a test is finished. Data from the TCU calibration tool
CANAPE (Vector Informatik) are collected and a script running in Matlab is automatically started
(not shown in the picture). This script contains evaluation criteria for the executed test and can de-
cide if the test is passed or not. This is based on existing, predefined criteria from the failure spe-
cification list. Automation Desk is also able to erase the failure memory of the TCU (via CANAPE)
in order to continue with the next test loop. This way the test execution and the test evaluation are
done automatically. The user only needs to read the test report and to forward the possible failures
to the function developers.

) ������%��
�������*

The complexity of transmission systems is steadily increasing due to growing market expectations
regarding efficiency, agility and comfort. The corresponding development times are constantly
shortened, while simultaneously keeping high quality standards. The growing complexity and lim-
ited resources impose an increasing pressure on both OEMs and suppliers to further improve the
development process. In particular, also the test and validation have to become more reliable and
more cost-effective.
For the new DCT development project GIF has adopted a comprehensive software test and valida-
tion method. Thousands of driving maneuvers are autonomously generated, executed and evalu-
ated using simulation. Due to the high degree of automation, the test effort spent by the develop-
ment engineers is significantly reduced, while, at the same time, the test coverage is significantly
increased. Future improvement directions regard the application of the scenario generation and

	1 Introduction
	2 The new GIF DCT
	3 The software development process
	4 Tests during functional developments
	4.1 Scenario generation and assessment with TestWeaver
	4.2 Testing the DCT functional software

	5 Tests during function prototyping
	6 Embedded code generation and validation
	7 HIL testing
	8 Summary and outlook

