
WHITE PAPER
Breaking the Build in the CI/CD DevOps Life Cycle
By Meera Rao

 | synopsys.com | 2

To stop the train, simply pull the chain
As a kid, I often traveled by train in India. I always wondered what would happen if I pulled the chain under the sign that read, “To Stop
Train, Pull Chain.” My parents warned me that it would cost them a fortune to pay the fine and that I’d be taken away by the police. Even
though it scared me as a child, I was still tempted by the thrill of pulling that chain.

Fast-forward 25 years, and I find myself pushing my clients to pull a similar metaphorical chain. The chain in this case exists in their fast-
tracked continuous integration/continuous delivery (CI/CD) pipeline, where the procedural train moves at an increasing speed to support
innovation requirements.

Before digging into why pulling the proverbial CI/CD pipeline chain is important, let’s first examine some key software security activities.
We’ll explore activities that take place inline within the pipeline, in addition to those performed out-of-band.

“What’s the difference between inline and out-of-band activities?” you may ask. Inline activities are those that you can completely
automate and run in a CI/CD pipeline without any human intervention. Examples include static analysis, dynamic analysis, and software
composition analysis.

Out-of-band activities are those that you can’t completely automate. Examples include architecture risk analysis, threat modeling, and
manual code review.

You can perform most inline activities out-of-band. However, you can’t perform out-of-band activities inline. As an example, there’s
currently no way to automate architecture risk analysis or manual code review.

Building security into the DevOps SDLC
Software security activities can be added throughout the software development life cycle (SDLC). The activities described in this eBook
are methodology agnostic. They can be applied to standard SDLC methodologies as well as waterfall, agile, and DevOps methodologies.

It’s critical to include security engineering in the following aspects of the SDLC:

•	 Software requirements

•	 Architecture

•	 Design

•	 Coding

•	 Testing

•	 Validation

•	 Measurement

•	 Maintenance

The following out-of-band and inline security activities illustrate how software practitioners can apply security to the various software
artifacts produced during software development. You can execute these security activities to improve both the security and quality of the
applications you deploy—regardless of your SDLC.

It’s critical to include security engineering across the software development life cycle.

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 3

Out-of-band activities
Threat modeling creates a blueprint that describes your system’s attack surface. It does so by identifying major software components,
assets, threat agents, security controls, trust zones, and the corresponding relationships between objects.

Architecture risk analysis (ARA) identifies technical risks to your business due to technical flaws in a system’s design. The analysis results
in specific mitigation and remediation advice for individual defects. The ARA process creates threat models, which are then used to
discover architecture-level flaws in software.

Manual secure code review discovers violations of secure coding standards and best practices by reviewing the application’s source
code line by line. Code reviews are a common mechanism for evaluating the efficacy of security controls and coding constructs that are
implemented to satisfy specific security requirements. These reviews are considered manual because humans carry them out.

Penetration testing involves the review of a running application to identify potential security vulnerabilities. Penetration tests generally
combine automated tool-assisted testing and in-depth manual analysis focusing on business logic as part of the security assessment of
an application or system. As part of this exercise, the tester looks to exploit weaknesses in the application or system to gain access to
restricted information and functionality. Penetration testers use the following approaches:

•	 Black box: Testers have no access to or information about the system. They might use information available in the public domain
to build test cases. They might also use various social engineering techniques (e.g., phishing) to gain access to the application or
environment.

•	 Gray box: Testers are provided with a piece of information (e.g., IP addresses, user accounts) for use in the testing process.

•	 White box: Testers have access to artifacts about the application (e.g., design documents, source code, API specifications) during the
testing process.

Inline activities
Static application security testing (SAST) is a software security activity consisting of automated source code reviews. This static analysis
technique uses commercial (e.g., Coverity) and open source tooling options.

Software composition analysis (SCA) is a process that consists of compiling, tracking, and monitoring free and open source software
(FOSS) used by software development teams.

Dynamic application security testing (DAST) is performed during the SDLC testing phase, where the application or system is tested from a
black box perspective. DAST is usually a tool-assisted, automated testing process that identifies common security vulnerabilities.

Insider threat detection identifies dangerous code written by malicious in-house developers or outsourced resources. Examples of
malicious code:

•	 Backdoors

•	 Logic bombs

•	 Time bombs

•	 Nefarious communication channels

•	 Obfuscated program logic

•	 Dynamic injection code

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
/software-integrity/software-security-services/software-architecture-design/threat-modeling.html
/software-integrity/software-security-services/software-architecture-design/risk-analysis.html
/software-integrity/resources/knowledge-database/code-review.html
/software-integrity/security-testing/penetration-testing.html
/software-integrity/security-testing/static-analysis-sast.html
/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf
/software-integrity/security-testing/software-composition-analysis.html
/software-integrity/resources/knowledge-database/open-source-software.html
/software-integrity/resources/knowledge-database/open-source-software.html
/software-integrity/security-testing/dynamic-analysis-dast.html
/software-integrity/software-security-services/insider-threat-detection.html

 | synopsys.com | 4

Breaking the build: The relationship between security and quality
The purpose of breaking the build is to treat security issues with the same level of importance as quality and business requirements. If
quality or security tests fail, the CI server breaks the build and sends notifications. When the build breaks, the CI/CD pipeline also breaks.
Depending on the reason for the broken build, it triggers appropriate activities, such as ARA, threat modeling, or manual code review.

If the build broke owing to a critical or high-risk finding (e.g., a SAST tool identified a SQL injection weakness), the development team
can resolve the issue, check in the code, and start the next integration. However, if the build broke owing to changes in the API (e.g., the
addition of password functionality), this may trigger out-of-band activities.

You may be thinking, “OK, we’re ready to break the build, but who’s responsible for breaking it and resolving the issues?” Let’s find out:

Security team responsibilities
•	 Select security activities based on the risk of the application, project, and build data.

•	 Configure appropriate security tools and integrate them into the build pipeline.

•	 Define rules on which the build breaks.

•	 Push results to a common metrics dashboard for reporting. Keep a scoreboard, dashboard, or other dynamic record of outstanding
security defects.

DevOps team responsibilities
•	 Assist the security team in breaking the build.

•	 Notify development teams when the build breaks and why.

Development team responsibilities
•	 Fix issues when the build breaks.

The three teams coordinate to make sure the process is well defined, tools are properly configured, and developers are ready to fix issues
when the build breaks. It may take a few weeks to get the process up and running; in some cases, it can take months to get it right.

Other CI/CD security integration considerations
Consideration Description

Checking scan health Check conditions to decide whether a scan is good. Helps with build viability.

Breaking the build Continue, pause, or break the build on certain criteria.

Tracking bugs Create automated tickets in the defect tracking system.

Handling out-of-band activities Determine which out-of-band activities to trigger.

Notifications Send continuous notifications via email or Slack.

Shared reusable libraries for CloudBees
Jenkins

Use libraries that are easily configurable, redeployable, and scalable across teams,
business units, and the entire organization.

GRC integration Deliver results programmatically to a single source for the organization’s risk
management tool.

Source code management / version
control

Trigger scans on SCM workflows such as pre-commit, pre-receive, and pre-merge/pull
requests.

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
/software-integrity/resources/knowledge-database/sql-injection.html

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
/software-integrity/software-security-services.html
http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/copyright.html

	_GoBack

