
WHITE PAPER

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 3

Introduction to ISO 26262

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
/software-integrity/security-testing/static-analysis-sast.html
/software-integrity/security-testing/software-composition-analysis.html
/software-integrity/security-testing/fuzz-testing.html
/software-integrity/managed-services.html

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 7

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 9

Topic Synopsys Software
Integrity Portfolio Support Rule Mapping

ASIL

A B C D

No unconditional
jumps (1i)

In the context of the C and C++ languages,
these issues would be addressed by
coding standards checkers.

MISRA-C 2012

Section 8.15 rules
would identify control
flow issues such as
unconditional jumps.

++ ++ ++ ++

No recursions (1j) Coverity is able to identify both direct and
indirect recursion at considerable depth.

MISRA-C 2012 Rule

17.2 forbids recursion.

+ + ++ ++

Testing of the embedded software (ISO 26262:2018, Part 6, Section 9)
Section 9 of the standard covers software unit verification and outlines a number of requirements to support the core functional
requirements as well as highlighting safety relevant activities which should also be carried out at this phase of the life cycle.

Synopsys software integrity tooling supports a number of these methods directly, but in addition, Synopsys recommends the
output from prior tooling operation should be leveraged as part of manual review activities and become integrated into the
software sign-off process.

ISO 26262:2012, Part 6, Table 7: Methods for software unit verification

Topic Synopsys Software Integrity Portfolio Support
ASIL

A B C D

Walk through (1a) For manual review processes, it’s recommended that users
consult the output from the relevant analysis tools as part of
their review process:

•	Coverity static analysis findings
•	Defensics testing reports
•	Black Duck policy reports and Bill of Materials

In addition to this, functionality such as secondary
review may be implemented in each tool, before a finding
is dismissed, as a matter of good practice in defect
management.

++ + o o

Pair-programming
(1b)

+ + + +

Inspection (1c) + ++ ++ ++

Semi-formal
verification (1d)

Coverity utilizes both semiformal and formal methods
as part of its analysis—for example, when traversing
conditions in code—and uses this information to augment its
understanding of the program under analysis.

+ + ++ ++

Formal
verification (1e)

o o + +

Control flow
analysis (1f)

Coverity creates an internal graph of program control flow
and uses this to detect control flow–related problems such
as unreachable code, infinite loops, and dead code.

+ + ++ ++

Data flow
analysis (1g)

Coverity performs value tracking internally to identify several
categories of defect including tainted data flow, buffer size
miscalculations, and division by zero errors.

+ + ++ ++

Static code
analysis (1h)

Coverity performs static code analysis based on abstract
representation to detect coding standards violations.

++ ++ ++ ++

Static analyses
based on abstract
representation
(1i)

Coverity performs static code analysis based on abstract
representation to detect many categories of defects such as
concurrency issues, security issues, memory management,
and resource management, which extends beyond the level
of complexity of simple coding standards checks.

+ + + +

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 10

Requirements
based test (1j)

For network interfaces and file formats, Defensics generates
test cases based on protocol specifications as requirements.

++ ++ ++ ++

Interface test (1k) For network interfaces and file formats, Defensics supports
testing interfaces that communicate in both supported and
proprietary protocols.

++ ++ ++ ++

Fault injection
test (1l)

Defensics generates test cases for use in fault injection
by manipulating message payload, sequence, and meta
information, according to the standard or custom protocol or
format specified.

+ + + ++

Resource usage
evaluation (1m)

Coverity detects a number of categories of resource
mismanagement including excessive program stack size
allocations and failure to release allocated resources
(resource leaks).

+ + + ++

Back to back
comparison test
between model
and code, if
applicable (1n)

Synopsys consulting services can provide code review
and threat model creation, which can be used to compare
implemented code to software design.

+ + ++ ++

Testing of the embedded software (ISO 26262:2018, Part 6, Section 11)
Software unit testing is an important requirement in the ISO26262 standard. Software unit tests must be planned, specified, and
executed.

The ISO standard specifies that the goal of these verification activities is not just to affirm compliance with specification of
hardware-software interface(s), but also to provide confidence in the absence of unintended functionality and properties.

To address this part of the standard, Synopsys proposes that organizations adopt fuzz testing (“fuzzing”) – a method by which
known good data is mutated to create new test cases, intended to discover and exercise boundary conditions in the target
device code.

Defensics is applicable primarily to interfaces exchanging data with external systems – such as network protocols, or file

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-race-for-cybersecurity-protecting-the-connected-car-in-the-era-of-new-regulation
https://auto.economictimes.indiatimes.com/news/industry/vw-ceo-expects-software-to-make-up-90-percent-of-auto-industry-innovation/68384527
https://www.economist.com/babbage/2010/05/16/techview-cars-and-software-bugs
file:///Users/rbay/Downloads/Potentially%20deadly%20automotive%20software%20defects

Synopsys helps development teams build secure, high-quality software, minimizing risks while
maximizing speed and productivity. Synopsys, a recognized leader in application security,
provides static analysis, software composition analysis, and dynamic analysis solutions that
enable teams to quickly find and fix vulnerabilities and defects in proprietary code, open source
components, and application behavior. With a combination of industry-leading tools, services,
and expertise, only Synopsys helps organizations optimize security and quality in DevSecOps
and throughout the software development life cycle.

For more information, go to www.synopsys.com/software.

Synopsys, Inc.
185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

Contact us:
U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

©2023 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at
www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. March 2023

The Synopsys difference

 | synopsys.com | 12

http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/copyright.html
https://twitter.com/SW_Integrity
https://www.facebook.com/���ϲ�ֱ������SoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

	Introduction to ISO 26262
	Challenges in automotive software development
	Introduction to the Synopsys Software Integrity Portfolio
	Applying the Synopsys software integrity portfolio to ISO 26262 requirements
	General topics for the product development at the software level (ISO 26262:2018, Part 6, Section 5)
	Use of continuous integration, and integration of automated tooling

	Cybersecurity
	Distributed development – Augmenting software integrity requirements within the development interface agreement (DIA)
	Tool qualification
	Validation of the software tool

	Software modeling and coding guidelines (ISO 26262:2018, Part 6, Section 1)
	ISO 26262:2018, Part 6, Table 1: Topics to be covered by modeling and coding guidelines

	Software unit design and implementation (ISO 26262:2018, Part 6, Section 8)
	ISO 26262:2012, Part 6, Table 6: Design principles for software unit design and implementation

	Testing of the embedded software (ISO 26262:2018, Part 6, Section 9)
	ISO 26262:2012, Part 6, Table 7: Methods for software unit verification

	Testing of the embedded software (ISO 26262:2018, Part 6, Section 11)
	ISO 26262:2018 Table 13: Test environments for conducting the software testing
	ISO 26262:2018 Table 14: Methods for tests of the embedded software
	ISO 26262:2018 Table 15: Methods for deriving test cases for software unit testing

